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1. The purpose of this paper is to integrate the non-integrated First Main
Theorem ((i) of the Theorem in Part I [12]) for the case of a holomorphic
map f: ¥V —M, where V is an open complex manifold and M is compact k#hlerian
and of the same dimension » as that of V. The formal aspect of the integra-
tion is trivial, but the more delicate part is to attend to the convergence of
the improper integrals which thus arise. In general, the convergence question
is quite untractable, as contrasted with the case of Riemann surfaces where
such matters can be adequately treated without exception [8]. The principal
results of this work are Theorem 5.1 and Corollary 5.2; the simplicity and
the very geometric nature of the hypothesis in these results justify the ap-
proach adopted here.

I take this opportunity to point out that the proof of the Theorem in [12]
is incomplete at two places; the last section (§8) of this paper is devoted to
filling in these gaps.

2. Definition 2.1. Let V' be an open complex manifold. 4 C~ function
7:V — [0, oo) is called an exhaustion function iff

(i) < is proper, i.e. ¢~ (compact set) is compact,

(ii) < has only isolated critical points in ¢~*[r,, co) for some r,.

A first remark is that every open manifold, real or complex, always admits
an exhaustion function (in fact one with only nondegenerate critical points).
We will always work in the range [r,, c0). Let € be the set of critical values
of ¢ in [r,, c0). Then (i) says that ¥ is discrete. If ¢ ¥, then «-%(¢) is a
compact submanifold of ¥ by (i). If 1 ¢ €, then «~*(¢) is a compact set which,
with a finite number of points deleted, is a submanifold of V. We will con-
sistently employ the notation:

V[t] = 7—1[07 t]:
oV = () .

It should be emphasized that the parameter value of the exhaustion functions
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in this paper goes to + oo . Now suppose that f: ¥ — M is holomorphic, dim
V = dim M =n, and M is compact kihlerian. Let 2 be the set of critical values
of fin M . By Sard’s theorem, £ is then of measure zero. Suppose further that

M=M-2.

For each a e M’, df is nonsingular at each point of f~'(a). Hence f~(a) is
discrete, and consequently f~*(a) N V{z] is finite. Suppose now:

(a) tis not a critical value of z.

d) fYa) NovVid = <.
Then the Theorem in [12] guarantees that if a e M’, then

(1) 2()=n(t, @) + f dea,

av[t]

where 2(¢) now stands for »(V{z]), and similarly »(¢, a) = n(V{t], a). The no-
tation in [12] is of course used throughout this paper without further com-
ment.

Let [z, t,] be an interval in [r,, co) such that each ¢ e [1,, t,] satisfies (@) and
(6). Then (1) holds for all such ¢ so that

(2) f “o()dt = f “n(t, @yt + f “dt f rdea,

153 1 vt

where ae M’ as usual. Now since each 3V[¢] is a submanifold provided that
at most a finite number of points F are deleted, in all matters concerning in-
tegration, such a set F can be ignored by standard approximation techniques.
Hence (2) continues to hold even if (a) is violated. To get around (b), more
work is required. The following lemma will be proved in §7.

Lemma A. If ae M, then f de \f*de3, is finite for all r.
vir]
Granting this, Fubini’s theorem implies that

t2
de A frdea, = f d1 f *dea, .
V{t2]-V [t t1 avel
In particular, the iterated integral on the right is a continuous function of ¢,,
t,. Now the other two integrals in (2) are obviously also continuous functions

of t,, t,. Thus we may extend (2) to all sub-intervals of {r,, oo) regardless of
whether (a) and (b) are in force or not. Defining

T() = f o(dt
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NG, @) = f ", a) dt
for a e M’, we therefore have

(3) () = N(r, d) + f dz A frded, .
Virl-¥re]
If now f~(a@) N closure (V{r]l — VIr,D) = {p,, ---, p;}, let D= be a ball of

radius ¢ around each p, relative to some coordinate system, and let D, =
ezt Dz. Denoting V[r] — Vir]] — D, by V,, we have by way of Lemma A4

a=1

that

dr N f*d°2, = lim | dc A\ f*d°2, .
V[r]-V[rol e Ve

Since f is holomorphic, f*d°i, = d°f*2,. (This is the first time the holomor-
phy of f is needed.) As dr /\ d°f*2, is C* in V', Proposition 7.10 of Bott &
Chern [9, p. 99] implies that

f de A dofpa, = f d(dez A F52,) — f %1, A dder
v, v, v,

- f dor A %2, — f 1, A dder .
v v,
We now need a second lemma.

Lemma B. (i) f 2, A ddoe is finite.

¥r]

(i) lm |dzAf2,=0.
S_‘OGDA
This Lemma, to be proved in §7 along with Lemma 4, assures us that
m [de A dpa,= [ deApa— [ den

e—=0
V. av([r] Vo]

—_ f*2, /\ dd°t .
Vir]-v[rol
If we define for each o ¢ M’

SCr, @) = f fe2, A ddor — f dr A Fa,

VIr1~VI[rol av[r]
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we have proved:

(4) NG, a) = T() + f dc A 3, + S(r, @)

8V [ro]

for each ac M’ .

3. Equation (4) will be used to derive some results to the effect that M
— f(V) is a set of measure zero. Before doing that, let us note the special re-
striction on (4), namely, that ae M’. f ae M — M’, then it is not clear that

d°r N\ i*}, exists. This is a serious problem because one would like to

dV[rol
have an inequality:

(5) N, & <T( + S0, a) + C,

where C is some constant independent of a and r . If this were true, then the
conclusion in Theorem 4.1 about M — f(V) being a set of measure zero could
be strengthened to the statement that § = 0 a.e. on M, where as usual

N(, a) ) .

d(a) = lim inf (1 — —m—
Is

r—00

Now what happens in the case of Riemann surfaces is this: f d’z N\ f*A, is
8V [rol
a continuous function of a, and so we may let C be the maximum of this

function on M (see [8, §91).

As we do not even know the convergence of f dt N\ f*¥2, in general,
8V [rol
this program is out of reach.

4. We will now proceed to put some restrictions on the Levi form dd*c
of z . In view of the important theorems of Andreotti-Grauert, it would be
desirable to be able to deal with the cases where dd®z has both negative and
positive eigenvalues. Unfortunately, this has not been accomplished.

Definition 4.1. An exhaustion function z is called concave iff dd°z < 0
on 77'[r, oo) for some r,, i.e. iff the eigenvalues of the Levi form dd°z are
nonpositive from r, upward. It is called convex iff dd°z > 0 on r~*[r, oo) for
some r,, i.e. iff the eigenvalues of the Levi form dd°r are nonnegative from
r, upward.

In the sequel, we will make the harmless assumption that the r, of Defini-
tion 4.1 is the same as that of Definition 2.1. Suppose then 7 is concave. Be-
cause 1, is a positive form on M ((ii) of the Theorem in [12]) and holomor-
phic mappings preserve positivity (we have again invoked the holomorphy of
D, (— f*i, A dd°r) is a positive form on ¥V in the sense that it induces a
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nonnegative measure on V. Because d¢z A f*2, always induces a positive
measure on dV/[¢] (for all these, see [9, p. 100]), we have

S(r, @) = f %2, A dder — f der A F¥2, < 0.
Virl-Virol avi(r]
Thus (4) implies that
(6) NG, @) < T(r) + f PN
3V [rol

We now integrate (6) with respect to a over M . For this, we need

Lemma C. n(¢, a) is a locally integrable function on {r,, r] X M.

This Lemma will also be proved in §7. For the moment, the holomorphy
of f implies that n(t, a) > 0 a.e. (this is the third place where we need f to

be holomorphic), so that Fubini’s theorem may be applied. Thus, fN (r, T,
y:
= fr dt fn(t, a)¥, for any measurable subset 4 of M. We may recall
7o A

that ¥ is the volume element of M and fllf = 1 by choice. To avoid confu-
M

sion, let M, denote the image of ¥ in M under f. Now suppose ¥ has a con-
cave exhaustion and M — M, has positive measure ¢ ; then we will see that
this leads to a contradiction. Since n(t,a) = 0if ae M — M,,

fo No, ¥, = i NG, )T, = f dt i ntt, T,

:f’dtff*wzf’v(t)dtzl"(r).

To Vel To

In other words,
(8) [ve 9w, =709,
My
where we have made use of Lemma 6.2 in [8]. On the other hand,

f (T(r)—i— f dcfAf*z,,)zzfa
(9) . il
=(1-€)T(r)+f¢afd"/\f*2a.

My 3V {rel
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We will now prove

(10) falf f dr A f*1, < C,,  C,independent of a and .
U aV[ra)

The argument leading to (10) is not dependent on any specific assumption on
dd’z and will be used again in §5. Also note once and for all that although

the integral f dez /\ f*2, is defined only for a e M’ . it makes sense to in-
3V [ro]

tegrate it over M because M-M’ = 2 is the critical values of f, and is a set

of measure zero. So let us recall that 2,(y) = g(a, y) A¥, , where A denotes

the interior product by the k#dhler form of M (7, p. 21], and g is C* on M X

21 > > in the terminology of de
rie- .

M except that along the diagonal it is O (

Rham [5, p. 135]. Recall also that g has been chosen to be positive on M X
M everywhere in accordance with (iii) of the Theorem in [12]. Thus f*g (or
more precisely, (1 X f)*g) is a positive (and obviously) measurable function
on M X 3VI[r,]. But ¥, is a positive measure on M, and d°z A f*(4¥,) is a
positive measure on 9VIr,] . Therefore, we may again invoke Fubini’s theo-
rem (alias Tonnelli’s theorem). Thus

v, f dor A f53, = f ez A (AT ) - f* ( f g(a, y)llfa)
My

iy av{rol aVirel

< [ eenrum) - ([aenr.).
M

3V 7ol

Now because of the singularity of g(a, y) (see [12, equation (8)]), fg(a, »&,
M

is a continuous function of y by virtue of Lemma 5 of de Rham [5, p. 140],
and so the last integral in the above inequality is a finite constant C, (we have
of course made use of the compactness of 3V [r,]) . This C, is clearly inde-
pendent of r and a, and so (10) is proved.

Combining (8), - - -, (10), we have

ITN<1 =T+ C,.

If we assume df to be nonsingular at some point of ¥, then v(z) becomes
a positive nondecreasing function of ¢, so that T(r) — cc as r — co, and
therefore 1 < (1 — &), which is impossible. Hence we have proved

Theorem 4.1. Let f:V — M be holomorphic, and df nonsingular at some
point of V. If V' has a concave exhaustion, and M is compact kéhlerian and
of the same dimension as that of V', then M — {(V) is of measure zero.

It should be stressed that in our definition the parameter ¢ goes to + co.
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This theorem is similar to the equidistribution theorem in [9]. Note also the
following consequence:

Corollary 4.2. If V is obtained from a compact kdhler manifold by re-
moving a set of positive measure, then V admits no concave exhaustion.

5. The case of convex exhaustion will now be examined (see Definition
4.1). Note the well-known fact that Stein manifolds are exactly those, which
admit an exhaustion function without critical points and whose Levi form has
everywhere strictly positive eigenvalues; so they form a sub-class of the com-
plex manifolds with convex exhaustion. In general, we again integrate (4) to
arrive at the analogue of Theorem 4.1. The precise statement is:

Theorem 5.1. Let f:V — M be a holomorphic mapping between complex
manifolds of the same dimension n such that df is nonsingular at one point of
V. Assume V has a convex exhaustion functiorn (i.e. eventually dd’r < 0),
and M is compact kiihlerian with kihler form . If

frert A ddr

lim inf Z{r3=V(rd =0,
0

then M — f(V) is a set of measure zero.

Proof. Let us denote the image of V' in M under f by M, . Assume the
theorem to be false, then M — M, has measure ¢ > 0. Integrating (4) over
M, , from §4 (especially (10)) we obtain

an T <A — & TH) + f Sty ¥, + C,.

Now, d°z A f*2, induces a positive measure on ¢V [r] (we again refer to Bott-
Chern [9, p. 100] for details), so that

f St )V, < f , f 2. A dd°r .
My

My VIrl1-V([rel

At this point, the condition dd°r > O enters crucially. Recall from §4 that
%2, = f*g(a, - ) - f*A¥. Because both f*A¥ and dd°z are positive forms,
f*AT A dd°r induces a positive measure on V. Since ¥ is also a positive
measure on M and f*g(a, - ) is a positive function measurable on M X V,
Fubini’s Theorem is again applicable.

Hence,

f 7, f 2, A ddee = f w( f (F*g(a, y)) - 47, /\dd%-)

My V{irl-VIro] Virl-Virel
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~ f P AT, A ddor - (fg(a, y) ll%)

VIrl-virol

< f PAT, A ddez - f* (fg(a, ) wa> .

VIr1~VIrel

Again by Lemma 5 of de Rham [5, p. 160], fg(a, V¥, is a continuous
M

function of y and thus attains a positive maximum C,, where C, is inde-

pendent of r and a. Hence the right side of the above inequality is not greater
than

c, f AT A dder .
Virl-¥iro)

Now observe that ¥ = ¢*/n! and so a simple computation gives AY =
£~ /(n — 1) ! . Thus

v, f fa A ddee< S f Frenml A dder .
(n—1)!
My VIr]-¥[7o] VIr]=V 7ol
Combining this with (11), we get
T <A —) T + €+ — et A dder .
(n— 1!

VIr]-¥Lrol

If the assumption of Theorem 5.1 is in force, then, as r — o0, 1 < (1 —¢),
which gives a contradiction. g.e.d.
The most important special case of Theorem 5.1, without doubt, is that of
V = C=. In this case, welet t = ¥,2;Z;. Thenddz =2 .,/— 1 Y,dz; A\
dZ, and dd°z > O everywhere. We may therefore let r, be 0. On the other
hand, the kihler form o, associated with the flat metric on C* is
@, = —“ig—l— T4z N dz;,

and therefore dd°z = 4w,. Hence

Corollary 5.2. Let f:C*— M be holomorphic with df nonsingular at a
point of C*. If M is compact kihlerian and of dimension n, and k is its kihler
form, then

e ' N\ w,

lim inf €271 =0
7 T(r)

(12)

implies that M — f(C") is of measure zero.
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It should be noted that the integrand f£*~* A\ w,has a very simple geometric
meaning. Let us fix a point p of C* and let f(p) = ge M. Then the unit
sphere S in the tangent space Cj of p is mapped by df onto a (possibly degen-
erate) hyper-ellipsoid in the tangent space M, of g. This hyper-ellipsoid has
2n principal axes of length 2, A5, Ay, Ay, -+ +» Any 4n- Let S, _; be the (n — 1)th
elementary symmetric function on 2,, - - -, 4,. Then it is a routine exercise to
show that

(* 7' A ) (p) = —1n—s -2 (p) .

Next, let us recall that, since ¢ = 3,2, Z;, C*[r] are the balls of radius
J7, and () = J "w(Odt where v(t) = j f* . Since it is a bit awkward to

0 _ cr
consider balls of radius | r instead of balls of radius r, we rephrase the
above corollary slightly. Let therefore D, denote the ball in C* of radius r.
In conformity with the definitions of v(¢) and T(r) above, let

W) = j P

THr) = f o

Then we have the following result weaker than Coroliary 5.2:
Corollary 5.3. Under the same hypothesis as in Corollary 5.2, if we have,
instead of (12),

et A w,

iminf2r = ¢

T—o0 ﬂ(r)
then M — f(C?) is a set of measure zero.
77
Proof. Since C*[t] = D 4, v¥(®) = v(#). Thus T(r) = f 2 v¥(s)s ds.
[}

Consequently, (12) is equivalent to:

46 A @y

. . D —
liminf—~ =0,
—o0 N >
’ " sv(s) ds

or equivalently,
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f'f*xn—l A @,

(13) lim inf Z——— = 0.
== f v¥(s)s ds

0

Now obviously, T¥r) = f Tv*(s)ds is dominated asymptotically by f T'v*(s)s ds.

0 0
So if the hypothesis of Corollary 5.3 is true, then (13) must hold. Hence by
Corollary 5.2 our proof is complete.

Note that the quantity f f¥em ' A\ @, was first introduced by Chern in {1,

D,
p- 537], where it was denoted by v,(¢). Now Chern’s theorem (ibid.) will be
deduced from Corollary 5.2 and the following lemmas.
First calculus lemma. Suppose h is continuous on {a, co) and
lim sup Th =+ o0.

roo
a

Then for every real number n > 1, lim sup rt"h(t) dt = + co.

r—oo
a

Proof. By the Tietze extension theorem, we may consider # as a con-

tinuous function defined on the real line. Let i) = fzh. Then the hypo-

1
thesis obviously implies lim sup /(r) =+ co. Now, it suffices to prove

lim sup T = + oo. Precisely, if r, > 1, N > 0 are given, we will produce

F—oo

a number u > r, such that f ut"h > N. For this purpose, let S be the subset

1
of [r,, oo) such that for every se S, I(s) > max {N, maximum of || in [1, r]}.
S is nonempty because lim sup l{r) = + oo, and S is of course closed. We let

u be the mnimum member of S. Then by choice, {u) > max {N, maximum
of |I]in [1, u]}. We proceed to use integration by parts. Since I’ = h, we get

f “ ok = url(u) — f “Upnr-t dr
1 1

Now #nr=~* is positive on [1, u]; so the mean value theorem for integrals may
be applied. Hence for some ¢, ¢ [1, ul,

f b= wrl(u) — Uty f “ et gt
1 1
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= u™(u) — Kt,) (u» — 1)
> uwrl(u) — | U(t) | (ur — 1)
>u(u) — lw) (u» — 1) > lu) > N.

Second calculus lemma. Let f, g be nonnegative functions continuous on
ks
[t
a

[a, oo) such that lim inf f, = Q. Then for every real number n > 1,
g

e

lim inf —

ks
e f g

a

a

=0.

Proof. If f is identically zero, there is nothing to prove. So we assume
f > 0 somewhere, then for the hypothesis to hold, it is necessarily true that
lim sup 7g = + oo. Consequently, lim sup T(eg — f) =+ oo, where ¢ is

kfadd r—o0
a

a
some positive constant to be specified. By the first calculus lemma,

lim sup T(s g — f)t* = + oo. In particular, on an infinite sequence {r.}, r, —

r—-o0

a
-+ oo, we must have

f nf < f etng.
o

a

Now, suppose the lemma were false, then lim inf f, =¢>0. Hence
i"g

7=
a

in a neighborhood {u, o) of o,

e

a

[re

a

> for all re [u, o].

In other words, f 7t"f2 f 7e trg for all refu, o). This clearly con-
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tradicts the above inequality.
Corollary 5.4 (Chern’s theorem). Let f:C*— M be the same as in Co-

rollary 5.2. Define v,(r) = f Rk A ok, 0< k< n, and let
DT

Ty(r) = f v@Ddt oy = f 0 g,

ot i

Suppose for r — <o,

(@ Tyr)— oo,

. T _ A
(b) 11r:1_w1.pf 0 =0;

then M — {(C") is a set of measure zero.

Proof. Obviously all the v,(r) are nondecreasing functions of r, so that
v1(¢) is a nonnegative function. We may therefore apply the second calculus
lemma to (b) to conclude that (13) and hence (12) hold.

6. The author would like to make some comments on Theorem 5.1 and
Corollary 5.2 in connection with Chern’s Theorem (Corollary 5.4). This the-
orem of Chern’s for M = P,C has so far been the central result in #-dimen-
sional equidistribution theory around which all later developments of the
subject have revolved. But the fact that Theorem 5.1 and Corollary 5.2
generalize this theorem by allowing for more general domain and image mani-
folds, by itself, hardly justifies their existence. Of course it gives one satis-
faction of sorts to have this generality, but the fact remains that we still do
not understand the special case of f:C* — P,C. So the author feels the main
points about Theorem 5.1 and Corollary 5.2 are that they show more trans-
parently how Chern’s v,(r) comes about, that their proof is simple and
straight-forward and that one can finally dispense with condition (1) of Co-
rollary 5.4, namely, T (r) - co. For in order that the latter be valid, v,(r)
roughly speaking must grow as rapidly as r*»~2. This growth restriction is not
satisfied for such simple mappings as polynominal mappings of C? — C* C
P,C, as is self-evident. In other words, the gap between necessary and suffi-
cient conditions for P,C — f(C?) to be of measure zero is too wide in the
presence of condition (a). As a first step towards a better understanding of
holomorphic mappings, this gap should be narrowed. It was this desire to
remove the hypothesis of T,(r) — co that had led to the writing of this series
of papers.

7. We now prove Lemmas A, B, C. We first dispose of Lemmas A and
B. Since ae M’, f~%(a) N Vir] is a finite set {p,, - - -, p;}. Recall that by the
very definition of M’, df(p,) is nonsingular for all ;. Thus we may choose a
neighborhood U of a so small that (i) f~%(U) is a disjoint union U,, -- -, U,,
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(i) p; e U; and (ii) f is a diffeomorphism on each U,. Let normal coordinates

X,, - -+, X5, be chosen around a as in §3 of [12] so that x;(a) = 0 and { aax (0)}
is orthonormal. We may as well assume U = {3, x} < &*}. Let us fix our
attention on U, say, and let y, = f*x, be the coordinate functions on U,.
Thus y,(p) =0,i=1, -..,2n. Now f*1, = f*g(a, - )f*A¥, and f*A¥ is C~.
To prove that the improper integrals in Lemmas A and B converge, we need
only focus our attention on the singularity of f*g(a, - ). Let us assume # > 1,
as the case n = 1 is contained in [8]. By (8) in Part I [12], the singularity of
f*g(a, - ) around p, is

1 1
@n —2)8,, (L:¥D*?

+7,

where 7 is a function such that both (3, y‘;-’)(znTs)p and (3;y)"~Vdy are
bounded (see (i) of §8 of the present paper). From this, Lemma A and (i) of
Lemma B are immediate. For (ii) of Lemma B, let us choose D? to be the
open ball {3, ¥? < ¢%}; then the desired conclusion is also obvious by employ-
ing polar coordinates.

Now to Lemma C. Let the singular locus of df in the closure of ¥'[r] — V[r,]
be &, i.e. ¥ is the subset on which df is singular. % is a lower dimensional
variety in a compact set and hence is itself compact. So M — f(¥) — f(@VIr,])
— f(@V[r]) to be called N is open dense. Let ¥ be the set of critical values
of ¢ in [r, r]. Since ¥ is a finite set, the set O = {r,, r] — ¥} X N is open
dense in [r,, r] X M. It suffices then to prove that n(t, a) is locally integrable
in Q. From this point on, the details are similar to those of Lemma 6.1 in
[8]. The main point is that for each ae N, f*(a) N V[r] — Vir,] is a finite
set {p,, - - -, p;} and f maps a neighborhood U, of p, diffeomorphically onto a
fixed neighborhood U of a in N. Then n(z, a) becomes locally constant in Q.

8. We now come to the two errors committed in Part I [12]. Both are
concerned with the careless handling of the symbol 0(1/r%), and are precisely
as follows. (We assume throughout this section that the dimension d of M
exceeds 2.)

(i) Recall first that from equation (8), we have, for y near g,

1 1

#) = G ) T

where r,(y) denotes the geodesic distance from y to a, and y is a function
such that (#27%) is bounded. Then in the computation of the explicit expres-~
sion for u,(= *dg(a, - )), it was assumed without comment that (r2~%) dy was
bounded.

This is of course false in general, but true in this special case; now we are



382 H. WU

going to prove this validity. To facilitate the discussion, let us take over all
the notation in §§27-31 of de Rham’s book [5]. (Therefore, we change M to
V, d to n, and r,(y) to r(a, y), etc.) From [5, p. 157] we know that the de
Rham-Green operator G is given by

G=0—(QK—-F+HO—HOK+HR) X 0 _ 0,

and g is just the degree zero portion of the kernel of this integral operator.
What was designated 5 above is exactly the contribution from the kernel of
0,. It should be noted once and for all that all the kernels which ever come
up are C> off the diagonal of V' X V. In the following, we only worry about
the behavior near the diagonal; so all the statements refer only to a neigh-
borhood of the diagonal. Now to be precise, r¢~*y is already bounded. It is
then a fact that a closer examination of £, will give the boundedness of r¢~*dy
as desired. The details are straightforward but tedious; so let it suffice to pin-
point the crucial facts. The first fact is that the kernels of F and A are C* on
all of V' X ¥, and the kernel of 2 is the product of a C~ function with a
power of r(x, y). Therefore Lemma 1 in {5, p. 136] is applicable. Next, K =
— H —A4F — P + PH + PAF, and the only wearisome member here is P;
we must have control of its kernel. Recall how P is defined on [5, p. 156];
it is the resolvent operator of (I — Q)& = «, i.e. & = (I — P)a should provide
a solution. Now the kernel g(x, y) of Q is 0(+> *) and is a product of a C*
function with a power of r(x, ) and therefore is known as having a weak
singularity (Mikhlin, [10}). The standard way to handle (] — Q)& = « is to
consider instead the equivalent equation

(14) T—-0™e=I+Q+ -+ + Q" e,

where m is some positive integer [10, pp. 62-64]. By Lemma 6 on p. 140
and Lemma 4 on p. 138 of [5], we may as well assume m so large that O™
has a C* kernel. Then the classical theory of Fredholm applies, and it tells us
that the resolvent operator of (14) has the form: I — P={I+P)I+Q + ---
+ Q™Y 4+ P,, where the kernels of P, and P, are C' near the diagonal of
V X V, and C> off the diagonal as usual. Therefore the only contribution to
the singularity of the kernel p(x, y) of P as well as to the partial derivatives
of p(x, y) comes from ({ + Q + .- + Q™). But the latter is manageable
precisely because Q is a product of a C* function with a power of r(x, y). On
the basis of these facts, a repeated application of Lemma 1 (p. 136), Lemma
4 (p. 138) and Lemma 6 (p. 140) of de Rham [5] gives us the desired
boundedness of ri~* dy.

(ii) A second unproved statement occurs right after equation (12) in [12].
We had
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—1
Sars

fe = S(= D xdag A e Adg A e Adxg - E,

where £ is a form such that r¢-® £ is bounded near a. Then it was stated with-
out proof that ff*& — 0 as ¢ — 0 (¢ is the radius of 9U,). This is not at all

a4
obvious; so a proof is also supplied now.

Observe first that d& is an integrable form. One can see this most simply
by noting dy, = d¢ and then by using the fact that dy, = 2 in M - {a}. Thus
dé = 2 in M — {a} and the above assertion is obvious. Now it suffices to es-
tablish the following.

Suppose W', V' are closed coordinate neighborhoods of two arbitrary
manifolds with coordinate functions {y, - - -, y,} and {x,, - - -, x,} defined on
them respectively. Suppose further that y,(p) = - - - y,(p) = 0 and x,(@) = - - -
= x4(a) = 0. Let {: W — V' be a C* map such that f(a) = {p}, and & be a
form on V', C* in V' — {a} such that r®*¢ is bounded in V'(r = (2, xDHV%)
and de is finite. Then f f*¢ -0ase—0.

ve rad)<?

Proof. Choose V = {Z, x? <&}, and let ¢, be so small that V' N (W) = &.
Then for all beV, the degree of f at b is n(W’, b) = constant (= n(W’, a))

(see, for instance, [11, p, 91]), Let U = f~%(V). We may further assume ¢,
so small that V € V’, U < W’. Now choose a C= function p with support in

Vsothat p=1in V" = {Z’ixﬁ < (%)2} .Let W, = {2,y < ¢}, where ¢ is
so small that W < f~1(V"). Now,

f f*d(og) = f n(U, b)d(o€) (I8, Lemma 6.2])

- f n(W’, b)d(pE)  (def. of U, V).

Since n(W’, b) is a constant, call it C. Then

(15) f*d(p&) = C | d(p&) = finite .
rae=c]

We have used the assumption of f]d{: | < oo. Now
5

f f*d(og) - fW | d(f*o8) + J Fed(o8)

(3
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—_ L]«*pg — J,;Ef*pf + i;f*d(,of)
_ f %€ + f f*d(08)

—— lim f¥&
£=0

W,
as ¢ — 0, by (15). On the other hand, if we choose § < -;— & so that V, =
{2:x3 <8} S V”. Then

c fd(pf) = f d(pg) + ¢ fd(f"é_)

= (fpf—fp5+fd(p5))

v, v
=C<—W£E+£d(p€))
-0 as§ —0,

because of (15) and the fact that r¢-3¢ is bounded. Combination of these with
(15) hence completes the proof.

Note. After the completion of this paper, Professor Wilhelm Stoll has
kindly called my attention to the following two points:

(i) Theorem 5.1 has been proved for M = P,C in his paper [6, The-
orem 5.1.3].

(ii) Dr. Hirschfelder in his thesis (University of Notre Dame, 1968) has
considered a more general situation than what is done in this series of papers.
His results seem to overlap considerably with those given here, while his
method is different from ours.
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